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We study the Josephson current through a ballistic normal metal layer of thickness D, on which two
superconducting electrodes are deposited within a distance L of each other. In the presence of an �in-layer�
magnetic field, we find that the oscillations of the critical current Ic��� with the magnetic flux � are signifi-
cantly different from an ordinary magnetic interference pattern. Depending on the ratio L /D and temperature,
Ic��� oscillations can have a period smaller than flux quantum �0, nonzero minima, and damping rate much
smaller than 1 /�. A similar anomalous magnetic interference pattern was recently observed experimentally.
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I. INTRODUCTION

Existence of a supercurrent in a Josephson junction is the
manifestation of the interference between the macroscopic
wave functions �superconducting order parameters� of the
two contacted superconductors. The quantum interference
can be modulated by an external magnetic field applied to
the junction. As a result, the critical �maximum� supercurrent
Ic��� shows a well-known Fraunhofer-diffraction-pattern-
like dependence on the magnetic flux � penetrating the junc-
tion area. In a superconductor-insulator-superconductor �SIS�
junction, the critical current,

Ic��� = Ic�0�
sin���/�0�

��/�0
, �1.1�

oscillates with the period of flux quantum �0=��c /e and an
amplitude decreasing as 1 /�.1,2 The main features of the
effect, i.e., damped oscillations of Ic with the magnetic flux,
take place in other types of Josephson weak links; however,
the detailed behavior, including the period of the oscillations
and the rate of damping, depends on the geometry as well as
the nature of the weak link.

In a wide SNS �N being a normal metal layer� junction, Ic
has a similar magnetic interference pattern as SIS systems.3

On the other hand, Heida et al.,4 investigating S–two-
dimensional-electron-gas–S �S2DEGS� junctions of compa-
rable width W and length L, have measured a 2�0 periodicity
of the critical current instead of the standard �0 periodicity.
The first explanation of this finding was due to Barzykin and
Zagoskin,5 who considered a S2DEGS junction with perfect
Andreev reflections at NS interfaces and both absorbing and
reflecting lateral boundaries, and obtained a 2�0 periodicity
in the limit L /W→� �i.e., in the limit of the point-contact
geometry�. Later, Ledermann et al.6 considered more realis-
tic reflecting boundaries at the edges and found that, in the
limit of strip geometry �L /W�1�, the periodicity of the criti-
cal current changes from �0 to 2�0 as the flux through the
junction increases. In general, increase of the periodicity was
attributed to the nonlocality of the supercurrent density in
hybrid NS structures.

In this paper, we report on a different type of magnetic
interference pattern in a planar SNS junction. The SNS junc-
tion studied below consists of a thin normal metal layer of

thickness D on which two superconducting electrodes are
deposited in a distance L of each other �Fig. 1�. An external
magnetic field is applied in the plane of the N layer, perpen-
dicular to the direction of the Josephson current flow. Such a
Josephson setup was recently used in the experiment by
Keizer et al.7 to investigate the Josephson supercurrent
through a S–half-metallic-ferromagnet–S �SHMFS� junction.
They used NbTiN superconducting electrodes on top of a
thin layer of CrO2, which is a fully polarized �half-metallic�
ferromagnet, i.e., it supports only one spin direction of elec-
trons. Surprisingly, Josephson supercurrent was detected for
the junction length L�300 nm in spite of strong pair break-
ing in CrO2, which is expected to suppress all singlet super-
conducting correlations. Reference 7 also reports measure-
ment of the magnetic interference pattern with magnetic field
applied in the plane of the HMF layer. It is found that Ic���
oscillates with the in-plane flux � with a period of order �0.
In contrast to a standard magnetic interference pattern �1.1�,
Ic has nonzero values at the minima and the amplitude of the
oscillations decreases rather slowly compared to 1 /�.

The long range superconducting proximity in HMF can be
explained in terms of the triplet superconducting correlations
generated at spin-active HMFS interfaces as a result of the
interplay between the singlet superconducting correlations
and a noncollinear magnetization inhomogeneity.8,9 While

1
01

ϕie∆=∆

x

L

D

2
02

ϕie∆=∆
z

yθ

φ

0y

1τ

2τ

0�

N

S2S1

0=τ

Z=D

Z=0

W

FIG. 1. �Color online� Schematic of the SNS junction. The cur-
rent flow between two superconductors �S1,2� through a normal
layer �N�. The NS interfaces are perfectly transparent.
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the singlet superconducting correlations are destroyed over a
short distance of the Fermi wavelength, the triplet compo-
nents can survive over a distance of the order of the normal
coherent length �N=vF /2�T, with vF being the Fermi veloc-
ity. In Ref. 7, by investigating the critical supercurrent for
different distances between the electrodes, it was concluded
that the length dependence is the same as in nonmagnetic
SNS junctions. This strongly suggests, indeed, that triplet
correlations are responsible for the observed Josephson cur-
rent.

The aim of the present paper is to investigate Ic��� in
such a planar SNS junction. Whereas this problem is inter-
esting by itself, we also believe that it is relevant for the
understanding of the experimental results of Ref. 7. Indeed,
penetration of triplet correlations in SHMFS junction is simi-
lar to an ordinary �singlet� superconducting proximity in
SNS systems, i.e., both decay exponentially within the length
scale �N. By noting this fact, we will use the quasiclassical
Green’s function formalism to investigate the magnetic flux
dependence of the supercurrent in the corresponding planar
SNS junction �see Fig. 1�. We find that the magnetic inter-
ference pattern is significantly different from that of the stan-
dard one. The period of the oscillations can be smaller than
�0 depending on the length-to-thickness ratio L /D. The pe-
riod tends to �0 at higher magnetic fluxes and also for very
large L /D. We also obtain the two anomalous features ob-
served in the experiment: the amplitude of the oscillations
has a rather slow decrease with � compared to the standard
SIS case �1.1�, and the critical current as a function of the
flux, Ic���, at low temperatures can have finite minima when
the total flux � is an integer or noninteger multiple of the �0
depending on the period of the oscillations.

In Sec. II, we introduce our model of a ballistic planar
SNS contact and present solutions of the Eilenberger equa-
tion for the quasiclassical Green’s functions of a given elec-
tronic trajectory. Introducing the effect of the in-plane mag-
netic field through a gauge invariant phase, we obtain the
expression of the critical supercurrent as a function of the
magnetic flux. Section III is devoted to the analysis of the
Ic��� in terms of L /D for different temperatures. In Sec. IV,
we present the conclusion.

II. JOSEPHSON CURRENT IN SNS JUNCTION WITH AN
IN-PLANE MAGNETIC FIELD

In this section, we calculate the Josephson current for a
clean SNS junction in the presence of an external magnetic
field H. The setup is schematically shown in Fig. 1. It con-
sists of a normal metallic �N� layer of thickness D and width
W, on which two superconducting electrodes are deposited at
a distance of L. This planar Josephson structure was studied
experimentally in Ref. 7 with a half-metallic N layer. A
phase difference � between order parameters of the super-
conductors drives a Josephson supercurrent through the parts
of N layer underneath the superconductors and the junction
N part �−L /2�y�L /2�. The magnetic field H=−Hx̂ is ap-
plied in the plane of the N layer, perpendicular to the direc-
tion of supercurrent flow. We consider a clean structure with
all dimensions L, W, and D being smaller than the electronic

impurity mean free path �imp, and ideally transparent NS
interfaces. At the same time, the Fermi wavelength is small
compared to L, W, and D, and the superconducting coher-
ence length �0=vF /2	0�T=0� �we use the system of units
with �=kB=1�. Under these conditions, the electronic prop-
erties of the system can be derived from the Eilenberger
equations for the semiclassical matrix Green’s function ĝ,

− vFn · �ĝ = 
n��̂3, ĝ� + �	̂�r�, ĝ� . �2.1�

The matrix Green’s function

ĝ = �g
n
f
n

f
n

† − g
n

� ,

where the normal g and anomalous f Green’s functions de-
pend on the Matsubara frequency 
n=�T�2n+1�, on the co-
ordinate r, and on the direction of motion n; �̂i �i=1,2 ,3�
denotes the Pauli matrices in the Nambu space, and the ma-
trix

	̂�r� = � 0 	�r�
	*�r� 0

�
represents the superconducting order parameter 	�r�. The
matrix Green’s function ĝ
n

satisfies the normalization con-
dition,

ĝ2 = 1, g
n

2 + f
n
f
n

† = 1, �2.2�

where f
n

† �r ,n�= f
n

* �r ,−n�. In components, the Eilenberger
equations have the form

− vFn · �g
n
= 	�r�f
n

† − 	*�r�f
n
, �2.3�

− vFn · �f
n
= 2
nf
n

− 2	�r�g
n
. �2.4�

We solve these equations along an electronic quasiclassical
trajectory �shown in Fig. 1�, which is parametrized by −�
����.10,11 Assuming a weak external magnetic field, we
neglect its effect on the orbital motion of the quasiparticles.
The magnetic field then will have only phase effect, which
we will include by introducing the gauge invariant phase as

� = �0 −
2�

�0
	

0

�

A · nd� , �2.5�

where �0 is the phase difference between two superconduct-
ors in the absence of the magnetic field, the second part is the
phase accumulated by the quasiparticle on the trajectory due
to the magnetic field H=��A, with � being the length of
the trajectory inside the N layer. The vector potential is taken
to be A=−Hzŷ.

A typical trajectory consists of three parts: the part ex-
tended from bulk of S1 ��=−�� to a point at NS1 interface
�=0; the part inside the N layer �0���, which extends
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from a point at NS1 interface to a point at NS2 interface; and
the last part, which extends from the point �=� to the bulk of
S2 ��=��. Our equations are supplemented by the boundary
conditions which determine the values of Green’s functions
in the bulk S1 and S2,

f
n
�� = � �� =

	0�T�exp�i�1,2�
�n

, �2.6�

g
n
�� = � �� =


n

�n
, �2.7�

where �n=
	0
2+
n

2, and 	0�T� is the temperature-dependent
superconducting gap. We neglect the variation of the order
parameter close to NS interfaces inside the superconductors
and approximate the order parameter by the step function,
	�r�=	0ei�1����+	0ei�2���−L�. We can obtain the Green’s
function g
n

on a trajectory inside N that is constant. It de-
pends only on the length of that trajectory � and the phase
difference �0, which is given by

g
n
= tanh��
n�/vF� + �i�0/2� + arcsinh�
n/	0�� . �2.8�

Note that in the presence of the magnetic field, the phase
difference �0 is replaced by � �see Eq. �2.5��.

The supercurrent density can then be obtained by averag-
ing Eq. �2.8� over all different possible classical trajectories.
This corresponds to an averaging over Fermi velocity direc-
tions. In the presence of the planar magnetic field, we find

j�r� = eN�0�TvF�

n

	 n Im g
n
��,vF�sin �d�d� .

�2.9�

Here, N�0� is the density of states at the Fermi surface and
Im g
n

�� ,vF� denotes the imaginary part of the normal com-
ponent of the matrix Green’s function, given by

Im g
n
=

	0
2�T�sin �

��n
2 + 
n

2�cosh � + 2�n
n sinh � + 	0
2 cos �

,

�2.10�

� =

n�

�Tc�0
. �2.11�

To calculate the integral of the vector potential along the
quasiclassical trajectories, we split it into the segments as
shown in Fig. 1,

	
0

�

A · nd� = 	
0

�1

A · nd� + 	
�1

�2

A · nd� + ¯

+ 	
�n−2

�n−1

A · nd� + 	
�n−1

�

A · nd� . �2.12�

For the first term on the right side, we can write

	
0

�1

A · nd� = − H	
0

y0/2

zdy .

Since the equation for this segment of the trajectory is
z=D�1−y�D tan � sin ��−1�, we get for the integral

	
0

�1

A · nd� = −
HDy0

4
, y0 = 2D tan � sin � , �2.13�

where y0 is shown in Fig. 1. Similarly, we find identical
results for the integrals of the vector potential over the other
segments. Therefore, for a trajectory with length �, the phase
induced by the planar magnetic field is proportional to

�� = 	
0

�

A · nd� =
− HDNy0

2
, �2.14�

where N is the number of the triangles �each triangle consists
of two segments� for the trajectory of length � passing
through the point z, N= �L / �4D tan � sin ��−z / �2D��
+ �L / �4D tan � sin ��+z / �2D��+2, with the square brackets
denoting the integer part.

Thus, for the phase difference, we obtain

� = �0 + �
�

�0

2ND tan � sin �

L
. �2.15�

Here, �=HDL is the total flux through the junction. Substi-
tuting this into Eq. �2.9� and taking the y component of the
current, we obtain the final expression

I��0�
I0

=
T

Tc�0
�


n=−�


n=� 	
0

D 	
0

� 	
−1

1 	0
2�T�sin��0 + �

�

�0

�

L
�1 − x2�1/2 sin ��1 − x2�1/2dx sin �d�dz

��n
2 + 
n

2�cosh � + 2�n
n sinh � + 	0
2 cos��0 + �

�

�0

�

L
�1 − x2�1/2 sin �

,

Ic��� = max0��0�2�

I��0�
I0

, �2.16�
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with the notations cos �=x and I0=2evFN�0�TcW�0, and W
being the width of the normal layer in the x direction, which
for a wide junction is taken to be much larger than D and L.
The length � of the quasiclassical trajectory equals �
=2ND /x. For low temperatures, T�vF /L, the summation
over Matsubara frequencies in Eq. �2.16� can be replaced by
the integration

2�T � �. . .� →	 �. . .�d
 →	 �. . .�	0�T�cosh �d� ,

where 
=	0 sinh �. For a long SNS junction �L��0� and
low temperature, Eq. �2.16� is simplified as

I��0�
I0

= 	
0

D 	
0

� 	
−1

1

E��,���1 − x2�1/2dx sin �d�dz ,

E��,�� =
2

�0
� �0

�
−

2�0
2

�2 ��
m=1

�

�− 1�msin�m��
m

, �2.17�

where E�� ,�� is the Fourier series, given by �see Ref. 12�

E��,�� =
1

�0
� �0

�
−

2�0
2

�2 ��� − 2�� �

2�
+

1

2
� . �2.18�

III. DISCUSSION AND RESULTS

Equation �2.16� expresses the magnetic interference pat-
tern Ic��� of a ballistic SNS junction in the presence of an
in-plane magnetic flux �. In this section, we analyze Ic��� in
terms of the length-to-thickness ratio L /D and the tempera-
ture T for D /�0=1 /30.

Let us start with analyzing the case of very large L /D.
Figures 2�a� and 2�b� show oscillations of Ic��� for L /D
=100 and at low �T=0.1Tc� and high �T=0.95Tc� tempera-
tures, respectively. At low temperatures, the critical current
goes through nonzero minima at finite fluxes. The amplitude
of supercurrent minima decreases with � and drops to zero
at ���0. Compared to an ordinary magnetic interference
pattern, the oscillations are weakly damped since their am-
plitude decreases with � much slower than 1 /�. With in-
creasing temperature, the amplitude of the oscillations de-
creases. Also, the minimal values of the supercurrent
decreases and vanishes as T→Tc, where 	0�T��T. Note that
at both low and high temperatures, the period of oscillations
varies from 0.92�0 �first minima� at low magnetic fluxes to
�0 at high fluxes. The result that the period of oscillations is
temperature independent comes from the fact that the gauge
invariant phase in the argument of the sine and cosine func-
tions in Eq. �2.16� does not contain any temperature-
dependent factors.

Figure 3 presents the magnetic interference pattern for a
lower L /D=10 and at the same temperatures as Fig. 2. From
these plots, we see that lowering L /D has two main effects.
First, the rate at which the amplitude of Ic oscillation de-
creases with � increases. Second, the period of oscillations
at both low and high temperatures becomes smaller �0.72�0
at small fluxes. By increasing �, the period increases up to

��0. Again as in Fig. 2, the value of supercurrent at the
minima vanishes as the temperature approaches Tc.

Still lower period of oscillations at small fluxes can be
reached at low values of L /D. This is illustrated in Fig. 4,
where the magnetic interference pattern is presented for
L /D=5. Clearly, the decay is close to the ordinary pattern
�1.1�, i.e., 1 /�, and the period can be as small as half the
flux quantum.

The existence of the nonzero minima in the oscillations of
Ic��� is related to the nonsinusoidal phase dependence of the
Josephson current �2.16�, which is more pronounced at low
temperatures T�Tc. We have found that Ic��� undergoes a
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FIG. 2. The critical current dependence on the external magnetic
field, applied in the plane of the normal metallic layer for different
temperatures, L /D=100 and D /�0=1 /30.
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FIG. 3. The same as Fig. 2, but for L /D=10.

MOHAMMADKHANI, ZAREYAN, AND BLANTER PHYSICAL REVIEW B 77, 014520 �2008�

014520-4



change of sign at a nonzero minimum. At such point, the
amplitude of the first harmonic ��sin �0� of the Josephson
current vanishes, and Ic��� is determined by the amplitude
of the higher �mainly second� harmonics which change sign
upon crossing the minimum. A similar effect was found be-
fore in ferromagnetic Josephson junctions �see Refs. 13–18,
and references therein�. As T approaches Tc, the ratio
	0�T� /T goes to zero and the current-phase relation �Eq.
�2.16�� becomes sinusoidal and, consequently, the nonzero
minima disappear.

The dependence of the period of the oscillations on the
magnetic flux and the geometry can be understood in terms
of the difference between the magnetic flux �� �Eq. �2.14��
enclosed by a trajectory of length �, and half of the flux �
penetrating through the area DL. The difference comes from
the fact that a trajectory which does not pass through the
edges of S contacts has extra parts in the N layer which lies
outside the area DL �see Fig. 1�. Writing ��=� /2+���, the
difference ��� vanishes only for the trajectories which pass
through the edges of S contacts. A finite averaged ����� over
different trajectories means that the period of Ic��� oscilla-
tions, obtained from Eq. �2.16�, differs from �0. We note that

in the limit of thin N layer L�D or high magnetic fluxes
���0, the contribution of the trajectories which are not
passing through the edges is negligibly small in the interfer-
ence structure and the period of the oscillation approaches
�0 �see Figs. 2–4�.

In contrast to the L�D case, for smaller L /D, the contri-
bution of the trajectories not passing through the edges is
important. Because of having larger length, a trajectory not
passing through the edges has greater contribution in gaining
the effect of the magnetic flux as compared to the corre-
sponding trajectory �having the same orientation � and ��
passing through the edges. Therefore, we expect that the ef-
fect of magnetic flux is more pronounced for thicker N layers
compared to the thinner ones, which explains why the de-
crease of the amplitude of Ic��� oscillations with � is faster
for smaller L /D.

IV. CONCLUSIONS

In conclusion, we have studied Josephson effect in a SNS
structure made of a thin ballistic N layer of thickness D, on
which two superconducting electrodes are deposited at the
distance L between each other. A magnetic field is applied in
the plane of the N layer, which modulates the superconduct-
ing interference and leads to a decaying oscillatory variation
of the critical supercurrent Ic��� with the magnetic flux �.
Using the quasiclassical Green’s functions approach, we
have shown that such a magnetic interference pattern has
three main differences with that of an ordinary pattern. First,
at low temperatures, the oscillations of the critical current
Ic��� go through the minima at which the supercurrent has
nonzero values. Second, for a large L /D, the amplitude of
the quasiperiodic oscillations of Ic��� decays at a rate which
is much slower than 1 /�. Third, at low magnetic fluxes, the
oscillations can have a period smaller than the magnetic
quantum flux �0 depending on L /D. These features have
been experimentally observed recently.7
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